skip to main content


Search for: All records

Creators/Authors contains: "Zovaro, Henry"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    The metal content of galaxies provides a window into their formation in the full context of the cosmic baryon cycle. In this study, we examine the relationship between stellar mass and stellar metallicity (MZ*R) in the hydrodynamic simulations Illustris, TNG, and EAGLE (Evolution and Assembly of GaLaxies and their Environment) to understand the global properties of stellar metallicities within the feedback paradigm employed by these simulations. Interestingly, we observe significant variations in the overall normalization and redshift evolution of the MZ*R across the three simulations. However, all simulations consistently demonstrate a tertiary dependence on the specific star formation rate (sSFR) of galaxies. This finding parallels the relationship seen in both simulations and observations between stellar mass, gas-phase metallicity, and some proxy of galaxy gas content (e.g. SFR, gas fraction, and atomic gas mass). Since we find this correlation exists in all three simulations, each employing a subgrid treatment of the dense, star-forming interstellar medium (ISM) to simulate smooth stellar feedback, we interpret this result as a fairly general feature of simulations of this kind. Furthermore, with a toy analytic model, we propose that the tertiary correlation in the stellar component is sensitive to the extent of the ‘burstiness’ of feedback within galaxies.

     
    more » « less
  2. ABSTRACT

    Slow rotator galaxies are distinct amongst galaxy populations, with simulations suggesting that a mix of minor and major mergers are responsible for their formation. A promising path to resolve outstanding questions on the type of merger responsible, is by investigating deep imaging of massive galaxies for signs of potential merger remnants. We utilize deep imaging from the Subaru-Hyper Suprime Cam Wide data to search for tidal features in massive [log10(M*/M⊙) > 10] early-type galaxies (ETGs) in the SAMI Galaxy Survey. We perform a visual check for tidal features on images where the galaxy has been subtracted using a Multi-Gauss Expansion (MGE) model. We find that 31$^{+2}_{-2}$ per cent of our sample show tidal features. When comparing galaxies with and without features, we find that the distributions in stellar mass, light-weighted mean stellar population age, and H${\alpha}$ equivalent width are significantly different, whereas spin ($\lambda _{R_{\rm {e}}}$), ellipticity, and bulge-to-total ratio have similar distributions. When splitting our sample in age, we find that galaxies below the median age (10.8 Gyr) show a correlation between the presence of shells and lower $\lambda _{R_{\rm {e}}}$, as expected from simulations. We also find these younger galaxies which are classified as having ‘strong’ shells have lower $\lambda _{R_{\rm {e}}}$. However, simulations suggest that merger features become undetectable within ∼2–4 Gyr post-merger. This implies that the relationship between tidal features and merger history disappears for galaxies with older stellar ages, i.e. those that are more likely to have merged long ago.

     
    more » « less
  3. Abstract

    Current methods of identifying the ionizing source of nebular emission in galaxies are well defined for the era of single-fiber spectroscopy, but still struggle to differentiate the complex and overlapping ionization sources in some galaxies. With the advent of integral field spectroscopy, the limits of these previous classification schemes are more apparent. We propose a new method for distinguishing the ionizing source in resolved galaxy spectra by use of a multidimensional diagnostic diagram that compares emission-line ratios with velocity dispersion on a spaxel-by-spaxel basis within a galaxy. This new method is tested using the Sydney-Australian-Astronomical-Observatory Multi-object Integral-Field Spectrograph Galaxy Survey (SAMI) Data Release 3 (DR3), which contains 3068 galaxies atz< 0.12. Our results are released as ionization maps available alongside the SAMI DR3 public data. Our method accounts for a more diverse range of ionization sources than the standard suite of emission-line diagnostics; we find 1433 galaxies with a significant contribution from non-star-forming ionization using our improved method as compared to 316 galaxies identified using only emission-line ratio diagnostics. Within these galaxies, we further identify 886 galaxies hosting unique signatures inconsistent with standard ionization by Hiiregions, active galactic nuclei, or shocks. These galaxies span a wide range of masses and morphological types and comprise a sizable portion of the galaxies used in our sample. With our revised method, we show that emission-line diagnostics alone do not adequately differentiate the multiple ways to ionize gas within a galaxy.

     
    more » « less
  4. ABSTRACT

    We present radial gas-phase metallicity profiles, gradients, and break radii at redshift z = 0–3 from the TNG50-1 star-forming galaxy population. These metallicity profiles are characterized by an emphasis on identifying the steep inner gradient and flat outer gradient. From this, the break radius, Rbreak, is defined as the region where the transition occurs. We observe the break radius having a positive trend with mass that weakens with redshift. When normalized by the stellar half-mass radius, the break radius has a weaker relation with both mass and redshift. To test if our results are dependent on the resolution or adopted physics of TNG50-1, the same analysis is performed in TNG50-2 and Illustris-1. We find general agreement between each of the simulations in their qualitative trends; however, the adopted physics between TNG and Illustris differ and therefore the breaks, normalized by galaxy size, deviate by a factor of ∼2. In order to understand where the break comes from, we define two relevant time-scales: an enrichment time-scale and a radial gas mixing time-scale. We find that Rbreak occurs where the gas mixing time-scale is ∼10 times as long as the enrichment time-scale in all three simulation runs, with some weak mass and redshift dependence. This implies that galactic discs can be thought of in two-parts: a star-forming inner disc with a steep gradient and a mixing-dominated outer disc with a flat gradient, with the break radius marking the region of transition between them.

     
    more » « less
  5. ABSTRACT

    We investigate the mean locally measured velocity dispersions of ionized gas (σgas) and stars (σ*) for 1090 galaxies with stellar masses $\log \, (M_{\!\ast }/M_{\odot }) \ge 9.5$ from the SAMI Galaxy Survey. For star-forming galaxies, σ* tends to be larger than σgas, suggesting that stars are in general dynamically hotter than the ionized gas (asymmetric drift). The difference between σgas and σ* (Δσ) correlates with various galaxy properties. We establish that the strongest correlation of Δσ is with beam smearing, which inflates σgas more than σ*, introducing a dependence of Δσ on both the effective radius relative to the point spread function and velocity gradients. The second strongest correlation is with the contribution of active galactic nuclei (AGN) (or evolved stars) to the ionized gas emission, implying that the gas velocity dispersion is strongly affected by the power source. In contrast, using the velocity dispersion measured from integrated spectra (σap) results in less correlation between the aperture-based Δσ (Δσap) and the power source. This suggests that the AGN (or old stars) dynamically heat the gas without causing significant deviations from dynamical equilibrium. Although the variation of Δσap is much smaller than that of Δσ, a correlation between Δσap and gas velocity gradient is still detected, implying that there is a small bias in dynamical masses derived from stellar and ionized gas velocity dispersions.

     
    more » « less